Задачи

Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По сложности:

По авторам:

Разность арифметической прогрессии отлична от нуля. Числа, равные произведениям первого члена этой прогрессии на второй, второго члена на третий и третьего на первый, в указанном порядке составляют геометрическую прогрессию. Найти се знаменатель.

Пока решения данной задачи,увы,нет...

Ответ: -2

Найти трехзначное число, цифры которого образуют геометрическую прогрессию. Если из этого числа вычесть 792. то получится число, записанное теми же цифрами, но в обратном порядке. Если же из цифры, выражающей число сотен, вычесть 4, а остальные цифры искомого числа оставить без изменения, то получится число, цифры которого образуют арифметическую прогрессию.

Пока решения данной задачи,увы,нет...

Ответ: 931

Найти сумму четырех первых членов геометрической прогрессии, обладающей тем свойством, что ее три первых члена, сумма которых равна \(\frac{148}{9}\), являются одновременно первым, четвертым и восьмым членами некоторой арифметической прогрессии.

Пока решения данной задачи,увы,нет...

Ответ: 25\frac{25}{27}

Даны две прогрессии: геометрическая с положительными членами \(b_{n}\), (знаменатель равен q, где \(q\neq n\)) и возрастающая арифметическая с членами \(a_{n}\), (разность равна d). Найти x из условия \(log_{x}b_{n}-a_{n}=log_{x}b_{1}-a_{1}\)

Пока решения данной задачи,увы,нет...

Ответ: x=q^{1/d}

Найти четыре числа, образующих геометрическую прогрессию, у которой сумма крайних членов равна 49, а сумма средних членов равна 14.

Пока решения данной задачи,увы,нет...

Ответ: 7;-14;28;-56

Найти третий член бесконечной геометрической прогрессии со знаменателем |q| < 1, сумма которой равна 1.6, а второй член равен -0,5.

Пока решения данной задачи,увы,нет...

Ответ: \frac{1}{8}

Найти три первых члена бесконечной геометрической прогрессии со знаменателем |q| < 1, сумма которой равна 6, а сумма пяти первых членов равна \(\frac{93}{16}\).

Пока решения данной задачи,увы,нет...

Ответ: 3;\frac{3}{2};\frac{3}{4}

Найти четыре числа, образующих геометрическую прогрессию, у которой второй член меньше первого на 35, а третий больше четвертого на 560.

Пока решения данной задачи,увы,нет...

Ответ: {7;-28;112;-448, -11\frac{2}{3};-46\frac{2}{3};-186\frac{2}{3};-746\frac{2}{3}}

Найти четыре числа, образующих геометрическую прогрессию, у которой третий член больше первого на 9, а второй больше четвертого на 18.

Пока решения данной задачи,увы,нет...

Ответ: 3;-6;12;-24

Знаменатель геометрической прогрессии равен \(\frac{1}{3}\), четвертый член этой прогрессии равен \(\frac{1}{54}\), а сумма всех ее членов равна \(\frac{121}{162}\). Найти число членов прогрессии.

Пока решения данной задачи,увы,нет...

Ответ: 5

Найти первый член и знаменатель геометрической прогрессии, если известно, что \(b_{4}-b_{2}=-\frac{45}{32}\) и \(b_{6}-b_{4}=-\frac{45}{512}\).

Пока решения данной задачи,увы,нет...

Ответ: {6;0,25, -6;-0,25}

Найти первый и пятый члены геометрической прогрессии, если известно, что ее знаменатель равен 3, а сумма шести первых членов равна 1820.

Пока решения данной задачи,увы,нет...

Ответ: 5;405

Произведение трех первых членов геометрической прогрессии равно 1728, а их сумма равна 63. Найти первый член и знаменатель прогрессии.

Пока решения данной задачи,увы,нет...

Ответ: {3;4, 48;0,25}

Сумма бесконечной геометрической прогрессии со знаменателем |q| <1 равна 16, а сумма квадратов членов этой же прогрессии равна 153.6, Найти четвертый член и знаменатель прогрессии.

Пока решения данной задачи,увы,нет...

Ответ: \frac{3}{16};\frac{1}{4}

Найти число членов конечной геометрической прогрессии, у которой первый, второй и последний члены соответственно равны 3, 12 и 3072.

Пока решения данной задачи,увы,нет...

Ответ: 6

Найти знаменатель q бесконечной геометрической прогрессии \((|q|<1)\), у которой каждый член в 4 раза больше суммы всех ее последующих членов.

Пока решения данной задачи,увы,нет...

Ответ: 0.2

В бесконечной геометрической прогрессии с положительными членами и со знаменателем |q| <1 сумма трех первых членов равна 10,5, а сумма прогрессии равна 12. Найти прогрессию.

Пока решения данной задачи,увы,нет...

Ответ: 6;3;1,5;…

Сумма трех первых членов геометрической прогрессии равна 21, а сумма их квадратов равна 189. Найти первый член и знаменатель прогрессии.

Пока решения данной задачи,увы,нет...

Ответ: {3;2, 12;0,5}

Сумма бесконечной геометрической прогрессии со знаменателем |q|<1 равна 4, а сумма кубов ее членов равна 192. Найти первый член и знаменатель прогрессии.

Пока решения данной задачи,увы,нет...

Ответ: 6;-0,5

Найти сумму семи первых членов бесконечной геометрической прогрессии со знаменателем |q| < 1 ‚если ее второй член равен 4, а отношение суммы квадратов членов к сумме членов равно \(\frac{16}{3}\)

Пока решения данной задачи,увы,нет...

Ответ: \frac{127}{8}

Даны две бесконечные геометрические прогрессии со знаменателем |q|< 1, различающиеся только знаками их знаменателей. Их суммы соответственно равны \(S_{1}\) и \(S_{2}\). Найти сумму S бесконечной геометрической прогрессии, составленной из квадратов членов любой из данных прогрессий. Установить связь между \(S_{1},S_{2}\) и S.

Пока решения данной задачи,увы,нет...

Ответ: S=S_{1}S_{2}

Первый член некоторой бесконечной геометрической прогрессии со знаменателем |q| < 1 равен 1.а се сумма равна S. Из квадратов членов этой прогрессии составлена новая бесконечная геометрическая прогрессия. Найти ее сумму.

Пока решения данной задачи,увы,нет...

Ответ: \frac{S^{2}}{2S-1}

Найти пятый член возрастающей геометрической прогрессии, зная, что ее первый член равен \(7-3\sqrt{5}\) и что каждый ее член, начиная со второго, равен разности двух соседних с ним членов.

Пока решения данной задачи,увы,нет...

Ответ: 2

Число 180 представить в виде суммы четырех слагаемых так, чтобы они составляли геометрическую прогрессию, у которой третий член был бы больше первого на 36.

Пока решения данной задачи,увы,нет...

Ответ: {12+24+48+96, 4,5+13,5+40,5+121,5}

Даны две геометрические прогрессии, состоящие из одинакового числа членов. Первый член и знаменатель первой прогрессии равны соответственно 20 и 0,75, а первый член и знаменатель второй прогрессии равны соответственно 4 и \(\frac{2}{3}\). Если перемножить члены этих прогрессий с одинаковыми номерами, то сумма всех таких произведений составит 158,75. Найти число членов этих прогрессий.

Пока решения данной задачи,увы,нет...

Ответ: 7

В конечной геометрической прогрессии известны ее первый член a, последний член b и сумма S всех ее членов. Найти сумму квадратов всех членов этой прогрессии.

Пока решения данной задачи,увы,нет...

Ответ: \frac{(a+b)S-2ab}{2S-(a+b)}

В некоторой геометрической прогрессии, содержащей 2n положительных членов, произведение первого члена на последний равно 1000. Найти суммудесятичных логарифмов всех членов прогрессии.

Пока решения данной задачи,увы,нет...

Ответ: 3n

Длины сторон треугольника представляют собой три последовательных члена возрастающей геометрической прогрессии. Сравнить знаменатель этой прогрессии с числом 2.

Пока решения данной задачи,увы,нет...

Ответ: >2

Сумма четырех чисел, составляющих геометрическую прогрессию, равна -40, а сумма их квадратов равна 3280. Найти эту прогрессию.

Пока решения данной задачи,увы,нет...

Ответ: {2;-6;18;-54, -54;18;-6;2}

Найти произведение n первых членов геометрической прогрессии, если известны их сумма S и сумма \(\alpha\) их обратных величин.

Пока решения данной задачи,увы,нет...

Ответ: \left (\frac{S}{\alpha}\right)^{n/2}

« 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 »