№17443
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Найти трехзначное число, цифры которого образуют геометрическую прогрессию. Если из этого числа вычесть 792. то получится число, записанное теми же цифрами, но в обратном порядке. Если же из цифры, выражающей число сотен, вычесть 4, а остальные цифры искомого числа оставить без изменения, то получится число, цифры которого образуют арифметическую прогрессию.
Ответ
931
Решение № 17441:
NaN