№17445
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Даны две прогрессии: геометрическая с положительными членами \(b_{n}\), (знаменатель равен q, где \(q\neq n\)) и возрастающая арифметическая с членами \(a_{n}\), (разность равна d). Найти x из условия \(log_{x}b_{n}-a_{n}=log_{x}b_{1}-a_{1}\)
Ответ
x=q^{1/d}
Решение № 17443:
NaN