Задача №17444

№17444

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,

Задача в следующих классах: 9 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Найти сумму четырех первых членов геометрической прогрессии, обладающей тем свойством, что ее три первых члена, сумма которых равна \(\frac{148}{9}\), являются одновременно первым, четвертым и восьмым членами некоторой арифметической прогрессии.

Ответ

25\frac{25}{27}

Решение № 17442:

NaN

Поделиться в социальных сетях

Комментарии (0)