№17462
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Геометрическая прогрессия, Алгебраические уравнения и системы уравнений, смешанные задачи на геометрическую прогрессию повышенной сложности, системы уравнений, системы нелинейных уравнений,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Даны две бесконечные геометрические прогрессии со знаменателем |q|< 1, различающиеся только знаками их знаменателей. Их суммы соответственно равны \(S_{1}\) и \(S_{2}\). Найти сумму S бесконечной геометрической прогрессии, составленной из квадратов членов любой из данных прогрессий. Установить связь между \(S_{1},S_{2}\) и S.
Ответ
S=S_{1}S_{2}
Решение № 17460:
NaN