Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32539: \( \left [\frac{5\pi}{6}+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left [\frac{5\pi}{6}+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32540: \( \left [\frac{2\pi}{3}+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left [\frac{2\pi}{3}+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32541: \( \left (\pi n; \frac{3\pi}{4}+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left (\pi n; \frac{3\pi}{4}+\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32542: \( \left (\pi n; \frac{5\pi}{6}+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left (\pi n; \frac{5\pi}{6}+\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32543: \( \left (\frac{\pi}{3}+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left (\frac{\pi}{3}+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32544: \( \left (\frac{\pi}{4}+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left (\frac{\pi}{4}+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32545: \( \left (\pi n; \frac{\pi}{6}+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left (\pi n; \frac{\pi}{6}+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32546: \( \left (\pi n; \frac{\pi}{3}+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left (\pi n; \frac{\pi}{3}+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32547: \( \left (\pi n; \pi -arcctg 2+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left (\pi n; \pi -arcctg 2+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32548: \( \left (\pi n; \pi -arcctg 3+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left (\pi n; \pi -arcctg 3+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32549: \( \left (\pi -arcctg 5+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left (\pi -arcctg 5+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32550: \( \left (\pi -arcctg 4+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left (\pi -arcctg 4+\pi n; \pi+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32551: \( \left (\pi n; arcctg 0,2+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left (\pi n; arcctg 0,2+\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32552: \( \left (\pi n; arcctg 0,1+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left (\pi n; arcctg 0,1+\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32553: \( \left [arcctg 12+\pi n; \pi +\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left [arcctg 12+\pi n; \pi +\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, простейшие тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32554: \( \left [arcctg 13+\pi n; \pi +\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left [arcctg 13+\pi n; \pi +\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32555: \( \left (\frac{\pi}{6}+\pi n; \frac{3\pi}{4}+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left (\frac{\pi}{6}+\pi n; \frac{3\pi}{4}+\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32556: \( \left (\frac{\pi}{4}+\pi n; \frac{5\pi}{6}+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left (\frac{\pi}{4}+\pi n; \frac{5\pi}{6}+\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32557: \( \left [arcctg 6+\pi n; \frac{2\pi}{3}+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left [arcctg 6+\pi n; \frac{2\pi}{3}+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32558: \( \left [\frac{\pi}{3}+\pi n; \pi-arcctg 6+\pi n\right ), n \in \mathbb{Z}\)
Ответ: \( \left [\frac{\pi}{3}+\pi n; \pi-arcctg 6+\pi n\right ), n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32559: \( \left [arcctg 30+\pi n; \pi-arcctg 20+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [arcctg 30+\pi n; \pi-arcctg 20+\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32560: \( \left [arcctg 20+\pi n; \pi-arcctg 30+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [arcctg 20+\pi n; \pi-arcctg 30+\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32561: \( \left [\frac{\pi}{4}+2\pi n; \frac{\pi}{3}+2\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [\frac{\pi}{4}+2\pi n; \frac{\pi}{3}+2\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32562: \( \left [\frac{\pi}{6}+2\pi n; \frac{\pi}{4}+2\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [\frac{\pi}{6}+2\pi n; \frac{\pi}{4}+2\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32563: \( \left [arcsin 0,75+2\pi n; arccos 0,6+2\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [arcsin 0,75+2\pi n; arccos 0,6+2\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32564: \( \left [arcsin 0,55+2\pi n; arccos 0,8+2\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [arcsin 0,55+2\pi n; arccos 0,8+2\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32565: \( \left [\pi-arcsin \frac{5}{13}+2\pi n; 2\pi-arccos \frac{11}{13}+2\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [\pi-arcsin \frac{5}{13}+2\pi n; 2\pi-arccos \frac{11}{13}+2\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32566: \( \left [\pi-arcsin \frac{12}{13}+2\pi n; 2\pi-arccos \frac{4}{13}+2\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [\pi-arcsin \frac{12}{13}+2\pi n; 2\pi-arccos \frac{4}{13}+2\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32567: \( \left [arctg 0,75+\pi n; arcctg 0,3+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [arctg 0,75+\pi n; arcctg 0,3+\pi n\right ], n \in \mathbb{Z}\)
Предмет и тема: Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, системы тригонометрических неравенств,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге: Шестаков С. ЕГЭ 2019. Математика. Неравенства и системы неравенств. Задача 15 (профильный уровень). – Litres, 2022.
Решение №32568: \( \left [arctg 1,25+\pi n; arcctg 0,7+\pi n\right ], n \in \mathbb{Z}\)
Ответ: \( \left [arctg 1,25+\pi n; arcctg 0,7+\pi n\right ], n \in \mathbb{Z}\)