Задачи

Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По сложности:

По авторам:

Из орудия производится выстрел под углом \(\alpha \) к горизонту. Начальная скорость снаряда \(v_{0}\). Поверхность горизонтальна. Найти горизонтальную \(v_{x}\) и вертикальную \(v_{y}\) проекции скорости снаряда, как функция времени \(t\). При каком значении угла \(\alpha \) дальность полета будет максимальной?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Из орудия производится выстрел под углом \(\alpha \) к горизонту. Начальная скорость снаряда \(v_{0}\). Поверхность горизонтальна. Найти зависимости координат \(x\) и \(y\) от времени. При каком значении угла \(\alpha \) дальность полета будет максимальной?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Из орудия производится выстрел под углом \(\alpha \) к горизонту. Начальная скорость снаряда \(v_{0}\). Поверхность горизонтальна. Найти уравнение траектории. При каком значении угла \(\alpha \) дальность полета будет максимальной?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Из орудия производится выстрел под углом \(\alpha \) к горизонту. Начальная скорость снаряда \(v_{0}\). Поверхность горизонтальна. Найти время полета \(t_{п}\). При каком значении угла \(\alpha \) дальность полета будет максимальной?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Из орудия производится выстрел под углом \(\alpha \) к горизонту. Начальная скорость снаряда \(v_{0}\). Поверхность горизонтальна. Найти наибольшую высоту \(h_{max}\) и дальность полета \(l\) снаряда. При каком значении угла \(\alpha \) дальность полета будет максимальной?

Пока решения данной задачи,увы,нет...

Ответ: NaN

Под каким углом \(\alpha \) к горизонту необходимо бросить тело, чтобы максимальная высота подъема была вдвое меньше дальности бросания? Ответ дать в градусах-минутах.

Решение №18773: \(\alpha =arctg2=63^{\circ}{26}'\)

Ответ: \(63^{\circ}{26}'\)

Два тела брошены под углом \(\alpha \) и \(90^{\circ}-\alpha \) к горизонту с одинаковой начальной скоростью. Найти отношение дальностей полета тел и максимальных высот подъема.

Решение №18774: \(\frac{l_{1}}{l_{2}}=1\); \(\frac{h_{1}}{h_{2}}=tg^{2}\alpha \)

Ответ: 1

Какой начальной скоростью \(v_{0}\) должна обладать сигнальная ракета, выпущенная под углом \(\alpha =45^{\circ}\) к горизонту, чтобы она вспыхнула в наивысшей точке своей траектории? Время горения запала ракеты \(t=6\) с. Ответ дать в \( \frac{м}{с} \).

Решение №18775: \(v_{0}=\frac{gt}{sin\alpha }=83\) \( \frac{м}{с} \)

Ответ: 83

Два тела брошены с земли под углами \(\alpha _{1}=30^{\circ}\) и \(\alpha _{2}=45^{\circ}\) к горизонту из одной точки. Каково отношение сообщенных им начальных скоростей \(\frac{v_{1}}{v_{2}}\), если тела упали на землю также в одной точке?

Решение №18776: \(\frac{v_{1}}{v_{2}}=\sqrt{\frac{sin2\alpha _{2}}{sin2\alpha _{1}}}=1,07\)

Ответ: 1.07

Пушка и цель находятся на одном уровне на расстоянии 5,1 км друг от друга. За какое время снаряд с начальной скоростью 240 \( \frac{м}{с} \) достигнет цели? Ответ дать в минутах.

Решение №18777: Через \(t_{1}=0,41\) мин или \(t_{2}=0,72\) мин (зависит от начального угла).

Ответ: 0,41; 0,72

Мальчик бросает мяч со скоростью \(v_{0}=5\) \( \frac{м}{с} \) под углом \(\alpha =45^{\circ}\) в сторону стены, стоя на расстоянии \(l=4\) м от нее. На каком расстоянии от стены должен встать мальчик, чтобы поймать мяч? Удар мяча о стенку считать абсолютно упругим. Ответ дать в метрах.

Решение №18778: \(s=6\) м

Ответ: 6

Тело брошено со скоростью \(v_{0}=20\) \( \frac{м}{с} \) под углом \(\alpha =60^{\circ}\) к горизонту. Найти координаты точек траектории тела, в которых скорости составляет с горизонтом угол \(\beta =45^{\circ}\), если начало координат — точка бросания тела. Ответ дать в метрах.

Решение №18779: \(y_{1}=y_{2}=\frac{v_{0}^{2}}{2g}(sin^{2}\alpha -cos^{2}\alpha \cdot tg^{2}\beta )\approx 10\) м; \(x_{1,2}=\frac{v_{0}^{2}}{2g}\frac{cos\alpha sin(\alpha \mp \beta )}{cos\beta }\), \(x_{1}\approx 7,5\) м и \(x_{2}\approx 28\) м

Ответ: 10; 7,5; 28

Из шланга, установленного на земле, бьет под углом \(\alpha =30^{\circ}\) к горизонту струя воды с начальной скоростью \(v_{0}=15\) \( \frac{м}{с} \). Площадь сечения отверстия шланга \(S=1\) \(S=1см^{2}\). Определить массу воды в струе, находящейся в воздухе.

Решение №18780: \(m=\frac{2v_{0}^{2}\rho Ssin\alpha }{g}=2,3\) кг

Ответ: 2.3

Из отверстия шланга, прикрытого пальцем, бьют две струи под углами \(\alpha \) и \(\beta \) к горизонту с одинаковой начальной скоростью \(v_{0}\). На каком расстоянии от отверстия по горизонтали они пересекаются?

Решение №18781: \(x=\frac{2v_{0}^{2}cos\alpha \cdot cos\beta }{gsin(\alpha +\beta )}\)

Ответ: NaN

Тело брошено со скоростью \(v=10\) \( \frac{м}{с} \) под углом \(\alpha =45^{\circ}\) к горизонту. Найти радиусы кривизны траектории тела в начальный момент его движения, спустя время \(t=0,5\) с и в точке наивысшего подъема тела над поверхностью земли. Ответ дать в метрах.

Решение №18782: \(R_{0}=\frac{v^{2}}{gcos\alpha }\approx 14,4\) м; \(R_{1}=\frac{v^{2}-2vgtsin\alpha +g^{2}t^{2})^{3/2}}{gvcos\alpha }=5,8\) м; \(R_{2}=\frac{v^{2}cos^{2}\alpha }{g}=5,1\) м

Ответ: 14,4; 5,8; 5,1

Под каким углом \(\alpha \) к горизонту надо бросить шарик, чтобы радиус кривизны траектории в начальный момент времени был в \(\eta =8\) раз больше, чем в вершине?

Решение №18783: \(\alpha =arccos(\frac{1}{\eta ^{1/3}})=60^{\circ}\)

Ответ: 60

Под каким углом \(\alpha \) к горизонту надо бросить шарик, чтобы центр кривизны вершины траектории находился на земной поверхности?

Решение №18784: \(\alpha =arctg\sqrt{2}=54,8^{\circ}\)

Ответ: 54.8

В сферической лунке прыгает шарик (рисунок ниже), упруго ударяясь о ее стенки в двух точках, расположенных на одной горизонтали. Промежуток времени при движении шарика слева направо равен \(T_{1}\), а при движении справа налево — \(T_{2}\). Определить радиус \(R\) лунки.

Решение №18785: \(R=\frac{gT_{1}T_{2}}{2\sqrt{2}}\)

Ответ: NaN

С какой скоростью \(v_{0}\) и под каким углом \(\alpha \) к горизонту было брошено тело, если в первую (\(t_{1}=1\) с) секунду движения скорость уменьшилась в 2 раза и в последующую секунду движения она еще уменьшилась в 2 раза? Ответ дать в \( \frac{м}{с} \) и градусах-минутах.

Решение №18786: \(v_{0}=18,5\) \( \frac{м}{с} \); \(\alpha =76^{\circ}{29}'\)

Ответ: 18,5; \(76^{\circ}{29}'\)

Для тела, брошенного с земли с начальной скоростью \(v_{0}\) под углом \(\alpha \) к горизонту, построить график зависимости проекции скорости \(v_{y}\) от времени \(t\).

Решение №18787: \(v=v_{0}sin\alpha -gt\). Смотреть рисунок.

Ответ: NaN

Для тела, брошенного с земли с начальной скоростью \(v_{0}\) под углом \(\alpha \) к горизонту, построить график зависимости проекции скорости \(v_{y}\) от координаты \(x\) (т.е. от расстояния по горизонтали от места бросания)

Решение №18788: \(v=v_{0}sin\alpha -\frac{gx}{v_{0}cos\alpha }\). Смотреть рисунок.

Ответ: NaN

Тело брошено с поверхности земли под углом \(\alpha =60^{\circ}\) к горизонту с начальной скоростью \(v_{0}=20\) \( \frac{м}{с} \). Найти перемещение, его модуль и направление от начальной точки бросания тела до ближайшей точки, в которой нормальное ускорение тела \(a_{n}=8\) \( \frac{м}{с^2} \). Ответ дать в метрах.

Решение №18789: \(\Delta \vec{r}=10\vec{i}+12,3\vec{j}\); \(\Delta r=15,85\) м; \(\beta =30,9^{\circ}\)

Ответ: 15,85; 30,9

Тело брошено под углом к горизонту так, что его радиус-вектор изменяется по закону: \(\vec{r}=(5+3t)\vec{i}+(5+2t-4,9t^{2})\vec{j}\). Ось \(X\) направлена вдоль поверхности земли, ось \(Y\) — перпендикулярно поверхности. Под каким углом к горизонту \(\alpha \) брошено тело?

Решение №18790: \(\alpha =arctg(\frac{v_{0y}}{v_{0x}})=33,7^{\circ}\)

Ответ: 33.7

Сферическая горка имеет радиус \(R\). При какой наименьшей скорости \(v_{0}\) камень, брошенный с поверхности земли, перелетит через горку, не коснувшись ее поверхности (рисунок ниже)?

Решение №18791: \(v_{0}=\sqrt{3gR}\)

Ответ: NaN

При какой минимальной начальной скорости можно перебросить камень через дом с покатой крышей? Ближайшая стена имеет высоту \(H\), задняя стена — высоту \(h\), ширина дома \(l\) (рисунок ниже).

Решение №18792: \(v_{0}=\sqrt{g(H+h+\sqrt{(H-h)^{2}+l^{2}})}\)

Ответ: NaN

Миномет установлен под углом \(\alpha =60^{\circ}\) к горизонту на крыше здания, высота которого \(h=40\) м. Начальная скорость мины \(v_{0}=50\) \( \frac{м}{с} \). Написать закон движения и уравнение траектории. Определить время \(t\) полета мины, максимальную высоту \(H\) ее подъема, дальность \(l\) полета, скорость \(v\) падения мины на землю. Начало координат поместить на поверхности земли так, чтобы оно находилась на одной вертикали с минометом и чтобы вектор скорости лежал в плоскости \(XOY\). Ответ дать в секундах, метрах и \( \frac{м}{с} \).

Решение №18793: а) \(y=h+v_{0}sin\alpha \cdot t-\frac{gt^{2}}{2}\); \(x=v_{0}tcos\alpha \); \(y=h+xtg\alpha -\frac{gx^{2}}{2v_{0}^{2}cos^{2}\alpha }\); б) \(t=9,68\) с; \(H=136\) м; \(l=242\) м; \(v=57,3\) м\с.

Ответ: 9,68; 136; 242; 57,3

Мячик брошен с высоты \(h=5\) м над поверхностью земли с начальной скоростью \(v_{0}=20\) \( \frac{м}{с} \) под углом \(\alpha =30^{\circ}\) к горизонту (рисунок ниже). Найти модуль и направление его средней скорости за все время полета. Ответ дать в \( \frac{м}{с} \).

Решение №18794: \(v_{ср}=17,3\) \( \frac{м}{с} \); \(\beta =6,7^{\circ}\)

Ответ: 17,3; 6,7

С вершины горы бросают камень под углом \(\alpha =30^{\circ}\) к горизонту (рисунок ниже). Определить начальную скорость камня, если он упал на расстоянии \(l=20\) м от точки бросания. Угол наклона горы к горизонту тоже равен \(30^{\circ}\). Ответ дать в \( \frac{м}{с} \).

Решение №18795: \(v_{0}=\frac{1}{2}\sqrt{\frac{gL}{sin\alpha }}\approx 10\) \( \frac{м}{с} \)

Ответ: 10

Из миномета ведут стрельбу по объектам, расположенным на склоне горы. На каком расстоянии \(l\) от миномета будут падать мины, если их начальная скорость \(v_{0}\), угол наклона горы \(\alpha \) и угол стрельбы относительно горизонта \(\beta \) (рисунок ниже) (\(\beta > \alpha \))?

Решение №18796: \(l=\frac{2v_{0}^{2}cos\beta sin(\beta -\alpha )}{gcos^{2}\alpha }\)

Ответ: NaN

Мотоциклист въезжает на высокий берег рва (рисунок ниже). Какую минимальную скорость должен иметь мотоциклист в момент отрыва от берега, чтобы перескочить ров? Величины, указанные на рисунке, считать известными.

Решение №18797: \(v_{0}=\frac{s}{cos\alpha }\times \sqrt{\frac{g}{2(h+stg\alpha )}}\)

Ответ: NaN

« 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 »