Задача №7340

№7340

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Определите, является ли последовательность ограниченной сверху, ограниченной снизу, ограниченной: \(x_{n}=\frac{\cos n}{n} \)

Ответ

NaN

Решение № 7340:

Для любого натурального n выполнено неравенство \(\left | \frac{\cos }{n} \right |=\frac{\left | \cos n \right |}{n}\leqslant \frac{1}{n}\leqslant 1\). Значит, последовательность \(\left \{ x_{n} \right \}\) ограниченная.

Поделиться в социальных сетях

Комментарии (0)