№7335
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Найдите множество значений последовательности \(a_{1}=1, a_{2}=2, a_{n+2}=\frac{a_{n+1}}{a_{n}} \)
Ответ
\left \{ \frac{1}{2}; 1; 2 \right \}
Решение № 7335:
Выпишем несколько первых членов последовательности: \(1; 2; 2; 1; \frac{1}{2}; \frac{1}{2}; 1; 2; 2\). Ясно(и легко проверяется по индукции), что последовательность \(\left \{ a_{n} \right \} \)переодична и период равен 6, иначе говоря, \(\forall n\in N a_{n}=a_{n+6}. Тогда \left \{ \frac{1}{2}; 1; 2 \right \}\) - множество значений этой последовательности.