Задача №6958

№6958

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,

Задача в следующих классах: 11 класс

Сложность задачи : 1

Задача встречается в следующей книге:

Условие

Найти наибольшее и наименьшее значение функции\(y=x+\frac{4}{(x-2)^{2}}\) на отрезке \([0;5]\)

Ответ

\underset{[0;5]}{max} y(x) не существует; \underset{[0;5]}{max} y(x) ; \underset{[0;5]}{min} y(x)=1

Решение № 6958:

NaN

Поделиться в социальных сетях

Комментарии (0)