№6958
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Найти наибольшее и наименьшее значение функции\(y=x+\frac{4}{(x-2)^{2}}\) на отрезке \([0;5]\)
Ответ
\underset{[0;5]}{max} y(x) не существует; \underset{[0;5]}{max} y(x) ; \underset{[0;5]}{min} y(x)=1
Решение № 6958:
NaN