№6897
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, Степени и корни с дробными показателями,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Провести указанные действия \(\left ( a^{\frac{3n}{2}}+b^{-\frac{3n}{2}}\right ):\left ( a^{\frac{n}{2}}+b^{-\frac{n}{2}} \right )\)
Ответ
\(a^{n}-\sqrt{\frac{a^{n}}{b^{n}}}+\frac{1}{b^{n}}\)
Решение № 6897:
\(\left ( a^{\frac{3n}{2}}+b^{-\frac{3n}{2}}\right ):\left ( a^{\frac{n}{2}}+b^{-\frac{n}{2}} \right )=\sqrt{a^{3n}}+\sqrt{b^{-3n}}:\sqrt{a^{n}}+\sqrt{b^{-n}}=a^{n}-\sqrt{\frac{a^{n}}{b^{n}}}+\frac{1}{b^{n}}\)