№6843
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, Задачи на все действия над радикалом,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Вычислить \(\frac{a+\sqrt{a^{2}-x^{2}}}{a-\sqrt{a^{2}-x^{2}}}-\frac{a-\sqrt{a^{2}-x^{2}}}{a+\sqrt{a^{2}-x^{2}}}\)
Ответ
\(\frac{\sqrt{a^{2}-x^{2}}}{x^{2}}\)
Решение № 6843:
\(\frac{a+\sqrt{a^{2}-x^{2}}}{a-\sqrt{a^{2}-x^{2}}}-\frac{a-\sqrt{a^{2}-x^{2}}}{a+\sqrt{a^{2}-x^{2}}}=\frac{2\sqrt{a^{2}-x^{2}2a}}{a^{2}-\left ( a^{2}-x^{2} \right )}=\frac{4a\sqrt{a^{2}-x^{2}}}{a^{2}-a^{2}+x^{2} }=\frac{\sqrt{a^{2}-x^{2}}}{x^{2}}\)