Задача №6473

№6473

Экзамены с этой задачей: Задачи на движение по воде Задачи на движение по воде

Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, Задачи на движение, Движение по воде, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Рациональные уравнения как математические модели реальных ситуаций,

Задача в следующих классах: 8 класс

Сложность задачи : 1

Задача встречается в следующей книге:

Условие

Лодочник проплыл 3 км по течению реки и 3 км против течения за то же время, за которое плот мог бы проплыть 4 км по течению. Собственная скорость лодки равна 6 км/ч. Найдите скорость течения реки.

Ответ

3 км/ч.

Решение № 6473:

Пусть скорость течения реки равна \( x \) км/ч, то скорость лодки по течению реки равна \( 6+x \) км/ч, а против \( 6-x \) км/ч. Составляем уравнение: \( \frac{3}{6+x}+\frac{3}{6-x}=\frac{4}{x} \frac{3}{6+x}+\frac{3}{6-x}-\frac{4}{x}=0 \frac{3x(6-x)+3(6+x)x}-4(36-x^{2}){x(6+x)(6-x)}=0 4x^{2}+36x-144=0 D=9^{2}-4*1*(-36)=81+144=225=15^{2} x_{1}=\frac{-9-15}{2}=-12 x_{2}=\frac{-9+15}{2}=3 \)

Поделиться в социальных сетях

Комментарии (0)