Задача №6472

№6472

Экзамены с этой задачей: Задачи на движение по воде Задачи на движение по воде

Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, Задачи на движение, Движение по воде, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Рациональные уравнения как математические модели реальных ситуаций,

Задача в следующих классах: 8 класс

Сложность задачи : 1

Задача встречается в следующей книге:

Условие

Турист проплыл на байдарке 24 км по озеру и 9 км против течения реки за то же время, какое понадобилось ему, чтобы проплыть по течению 45 км. С какой скоростью плыл турист по озеру, если скорость течения реки равна 2 км/ч?

Ответ

8 км/ч

Решение № 6472:

Пусть турист плыл по озеру со скоростью \( x \) км/ч, тогда скорость байдарки по течению реки равна \( x+2 \) км/ч, а против течения \( x-2 \) км/ч. \( \frac{24}{x}+\frac{9}{x-2}=\frac{45}{x+2} \frac{24(x-2)(x+2)+9x(x+2)-45x(x-2)}{x(x-2)(x+2)}=0 \frac{24(x^{2}-4)+9x^{2}+18x-45x^{2}+90x}{x(x-2)(x+2)}=0 \frac{24x^{2}-96+9x^{2}+18x-5x^{2}+90x}{x(x-2)(x+2)}=0 -12x^{2}+108x-96=0 | :(-12) x(x-2)(x+2)\neq 0 x^{2}-9x+8=0 D=(-9)^{2}-4*8*1=81-32=49=7^{2} x_{1}=\frac{9-7}{2}=1 x_{2}=\frac{9+7}{2}=8 \).

Поделиться в социальных сетях

Комментарии (0)