№6372
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Разложение квадратного трехчлена на линейные множетели,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Разложите на множетели квадратный трехчлен: \( x^{2}-6x+1 \).
Ответ
NaN
Решение № 6372:
\( x^{2}-6x+1=0 D=(-6)^{2}-4*1*1=16-4=12 x_{1}=\frac{6-\sqrt{12}}{2}=\frac{6-\sqrt{4*3}}{2}=\frac{6-2\sqrt{3}}{2}=3-\sqrt{3} x_{2}=3+\sqrt{3} x^{2}-6x+1=(x-3+\sqrt{3})(x-3-\sqrt{3}) \).