№5765
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \(\frac{1-x}{x^{2}-xy}-\frac{y-1}{y^{2}-xy}\)
Ответ
\(-\frac{1}{xy}\)
Решение № 5765:
\(\frac{1-x}{x^{2}-xy}-\frac{y-1}{y^{2}-xy}=\frac{1-x}{x(y-x)}-\frac{y-1}{y(y-x)}=\frac{1-x}{x(x-y)}+\frac{y+1}{y(x-y)}=\frac{y(1-x)+x(y-1)}{xy(x-y)}=\frac{y-xy+xy-x}{xy(x-y)}=\frac{y-x}{xy(x-y)}=-\frac{x-y}{xy(x-y)}=-\frac{1}{xy}\)