№5744
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \(\frac{4-18x}{(3x-2)(3x+2)}-\frac{3x}{2-3x}\)
Ответ
\(\frac{3x-2}{3x+2}\)
Решение № 5744:
\(\frac{4-18x}{(3x-2)(3x+2)}-\frac{3x}{2-3x}=\frac{4-18x}{(3x-2)(3x-+2)}+\frac{3x}{3x-2}=\frac{4-18x+3x(3x+2)}{(3x-2)(3x+2)}=\frac{4-18x+9x^{2}+6x}{(3x-2)(3x+2)}=\frac{9x^{2}-12x+4}{(3x-2)(3x+2)}=\frac{(3x-2)^{2}}{(3x-2)(3x+2)}=\frac{3x-2}{3x+2}\)