№5737
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \(\frac{x^{2}=3xy}{(x+y)(x-y)}+\frac{y}{x-y}\)
Ответ
\(\frac{x-y}{x+y}\)
Решение № 5737:
\(\frac{x^{2}=3xy}{(x+y)(x-y)}+\frac{y}{x-y}=\frac{x^{2}-3xy+y(x+y)}{(x+y)(x-y)}=\frac{x^{2}-3xy+xy+y^{2}}{(x+y)(x-y)}=\frac{x^{2}-2xy+y^{2}}{(x+y)(x-y)}=\frac{(x-y)^{2}}{(x+y)(x-y)}=\frac{x-y}{x+y}\)