№5722
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найдите область определения алгебраических дробей и выполните указанные действия: \(\frac{m+2n}{n(m+n)}+\frac{n}{m(m+n)}\)
Ответ
\(m \neq -n\)
Решение № 5722:
\(\frac{m+2n}{n(m+n)}+\frac{n}{m(m+n)}=\frac{m(m+2n)+n^{2}}{mn(m+n)}=\frac{m^{2}+2mn+n^{2}}{mn(m+n)}=\frac{(m+n)^{2}}{mn(m+n)}=\frac{m+n}{mn}; n \neq 0, m \neq 0; m \neq -n\)