№5557
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Приведите к наименьшему общему знаменателю алгебраические дроби: \(\frac{x-3}{x^{3}-xy}\) и \(\frac{y-3}{xy-y^{2}}\)
Ответ
\(xy(x-y)\)
Решение № 5557:
\(\frac{x-3}{x^{3}-xy}=\frac{x-3}{x(x-y)}=\frac{y(x-3)}{xy(x-y)}; \frac{y-3}{xy-y^{2}}=\frac{y-3}{y(x-y)}=\frac{x(y-3)}{xy(x-y)}\)