№5492
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найдите значение дроби: \(\frac{2a+4b}{0,2a^{2}-0,8b^{2}}\), если \(a-2b=5, a+2b \neq 0\)
Ответ
2
Решение № 5492:
\(\frac{2a+4b}{0,2a^{2}-0,8b^{2}}=\frac{2(a+2b)}{0,2(a^{2}-4b^{2})}=\frac{10(a+2b)}{(4-2b)(a+2b)}=\frac{10}{a-2b}; a-2b=5; a+2b \neq 0; \frac{10}{a-2b}=\frac{10}{5}=2\)