№5476
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Докажите, что если \(\frac{3b-a}{b-2a} = 4\), то \(\frac{2a^{2}-3ab+2b^{2}}{2a^{2}-ab}=1,58\)
Ответ
15.8
Решение № 5476:
\(\frac{3b-a}{b-2a}=4⇒3b-a=5(b-2a)⇒3b-a=4b-8a⇒3b-4b=-8a+a⇒-b=-7a⇒b=7a; \frac{2a^{2}-3ab+2b^{2}}{2a^{2}-ab}=\frac{2a^{2}-3 \cdot a \cdot 7a+2 \cdot (7a)^{2}}{2a^{2}-a \cdot 7a}=\frac{2a^{2}-21a^{2}+98a^{2}}{2a^{2}-7a^{2}}=\frac{79a^{2}}{-5a^{2}}= \frac{79}{-5}=15,8\)