№4806
Экзамены с этой задачей: Задачи на совместную работу Задачи на совместную работу
Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, Текстовые задачи, Задачи «на части» и «на уравнивание», Текстовые арифметические задачи с использованием дробей, Задачи на совместную работу,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Коля и Петя вскапывают грядку за 10 мин, а один Коля – за 15 мин. За сколько минут вскапывает грядку один Петя?
Ответ
30
Решение № 4806:
Для решения задачи определим, за какое время один Петя вскапывает грядку. Обозначим время, за которое Петя вскапывает грядку, как \( t \) минут. <ol> <li>Пусть \( t \) — время, за которое Петя вскапывает грядку.</li> <li>Определим производительность Коли и Пети: <ul> <li>Коля вскапывает грядку за 15 минут, значит, его производительность \( \frac{1}{15} \) грядки в минуту.</li> <li>Коля и Петя вместе вскапывают грядку за 10 минут, значит, их совместная производительность \( \frac{1}{10} \) грядки в минуту.</li> </ul> </li> <li>Запишем уравнение для совместной производительности: \[ \frac{1}{15} + \frac{1}{t} = \frac{1}{10} \] </li> <li>Решим уравнение для нахождения \( t \): \[ \frac{1}{t} = \frac{1}{10} - \frac{1}{15} \] </li> <li>Найдем общий знаменатель для дробей: \[ \frac{1}{10} = \frac{3}{30}, \quad \frac{1}{15} = \frac{2}{30} \] </li> <li>Вычтем дроби: \[ \frac{1}{t} = \frac{3}{30} - \frac{2}{30} = \frac{1}{30} \] </li> <li>Возьмем обратное значение: \[ t = 30 \] </li> </ol> Таким образом, Петя вскапывает грядку за 30 минут. Ответ: 30