Задача №3882

№3882

Экзамены с этой задачей: Задачи на движение по воде Задачи на движение по воде

Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, Текстовые задачи, Задачи на движение, Движение по воде, Задачи «на части» и «на уравнивание», Текстовые арифметические задачи с использованием дробей,

Задача в следующих классах: 5 класс 6 класс

Сложность задачи : 1

Задача встречается в следующей книге:

Условие

Два человека отправляются из одного и того же места на прогулку до опушки леса, находящейся в 6 км от места отправления. Первый идёт со скоростью 4,5 км/ч, а второй − со скоростью 5,5 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. Сколько метров от опушки до места их встречи?

Ответ

600

Решение № 3882:

Для решения задачи выполним следующие шаги: <ol> <li>Определим время, за которое второй человек дойдет до опушки леса. Пусть это время будет \( t_1 \). \[ t_1 = \frac{6 \text{ км}}{5,5 \text{ км/ч}} = \frac{6}{5,5} \text{ ч} = \frac{60}{55} \text{ ч} = \frac{12}{11} \text{ ч} \] </li> <li>Определим расстояние, которое первый человек пройдет за это время. Пусть это расстояние будет \( d_1 \). \[ d_1 = 4,5 \text{ км/ч} \cdot \frac{12}{11} \text{ ч} = \frac{4,5 \cdot 12}{11} \text{ км} = \frac{54}{11} \text{ км} \] </li> <li>Определим время, за которое второй человек вернется обратно к месту встречи. Пусть это время будет \( t_2 \). \[ t_2 = \frac{d_1}{5,5 \text{ км/ч}} = \frac{\frac{54}{11} \text{ км}}{5,5 \text{ км/ч}} = \frac{54}{11 \cdot 5,5} \text{ ч} = \frac{54}{60,5} \text{ ч} = \frac{54}{60,5} \text{ ч} = \frac{108}{121} \text{ ч} \] </li> <li>Определим расстояние, которое первый человек пройдет за это время. Пусть это расстояние будет \( d_2 \). \[ d_2 = 4,5 \text{ км/ч} \cdot \frac{108}{121} \text{ ч} = \frac{4,5 \cdot 108}{121} \text{ км} = \frac{486}{121} \text{ км} \] </li> <li>Определим полное расстояние, которое первый человек пройдет до места встречи. Пусть это расстояние будет \( d \). \[ d = d_1 + d_2 = \frac{54}{11} \text{ км} + \frac{486}{121} \text{ км} = \frac{54 \cdot 11 + 486}{121} \text{ км} = \frac{594 + 486}{121} \text{ км} = \frac{1080}{121} \text{ км} \] </li> <li>Определим расстояние от опушки до места встречи. Пусть это расстояние будет \( d_o \). \[ d_o = 6 \text{ км} - d = 6 \text{ км} - \frac{1080}{121} \text{ км} = \frac{726 - 1080}{121} \text{ км} = \frac{-354}{121} \text{ км} \] </li> <li>Переведем расстояние в метры. \[ d_o = \frac{-354}{121} \text{ км} = \frac{-354000}{121} \text{ м} \] </li> </ol> Таким образом, расстояние от опушки до места их встречи составляет \( \frac{354000}{121} \) метров. Ответ: \( \frac{354000}{121} \) м.

Поделиться в социальных сетях

Комментарии (0)