Задача №35866

№35866

Экзамены с этой задачей: системы неравенств в бытовых задачах

Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, неравенства в текстовых задачах,

Задача в следующих классах: 8 класс 9 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Два вкладчика вложили деньги в общее дело. После этого первый вкладчик добавил ещё 4 млн рублей, в результате чего его доля в общем деле возросла на 0,06. А когда он добавил ещё 4 млн рублей, его доля возросла ещё на 0,02. Сколько денег ему нужно добавить, чтобы увеличить свою долю ещё на 0,03?

Ответ

36000000

Решение № 35853:

Пусть изначально суммарный вклад составлял \(y\) миллионов рублей, из них \(x\) миллионов рублей — первого вкладчика. Тогда его доля составляла \(\frac{x}{y}\). После того как первый добавил 4 млн рублей, суммарно вклад составил \((y+4)\) млн рублей, из них \((x+4)\) — первого вкладчика. Тогда его доля возросла до \(\frac{x+4}{y+4}\). По условию \(\frac{x+4}{y+4}-\frac{x}{y}=0,06\), откуда \(4(y-x)=0,06y(y+4)\). После того как он снова добавил 4 млн рублей, общая сумма вклада стала равна \((y+8)\) млн рублей, из них \((x+8)\) — первого вкладчика. Тогда \(\frac{x+8}{y+8}-\frac{x+4}{y+4}=0,02\), откуда \(4(y-x)=0,02(y+4)(y+8)\). Таким образом, \(0,06y(y+4)=0,02(y+4)(y+8)\), \(6y=2(y+8)\), \(y=4\). Из условия \(4(y-x)=0,06y(y+4)\) получим: \(4(4-x)=0,06\cdot 4\cdot (4+4)\), откуда \(4-x=0,06\cdot 8\) и \(x=3,52\). Если тот же вкладчик добавит ещё \(k\) млн рублей, то его доля составит При найденных значениях \(x\) и \(y\) решим относительно \(k\) уравнение \(frac{x+8+k}{y+8+k}-\frac{x+8}{y+8}=0,03\); \(\frac{11,52+k}{12+k}-\frac{11,52}{12}=0,03\); \(\frac{11,52+k}{12+k}-0,96=0,03\); \(11,52+k=0,99(12+k)\); \(11,52+k=11,88+0,99k\); \(0,01k=0,36\); \(k=36\). Таким образом, для того, чтобы достичь требуемого, вкладчик должен добавить 36 млн рублей. Ответ: 36000000 рублей.

Поделиться в социальных сетях

Комментарии (0)