№35865
Экзамены с этой задачей: системы неравенств в бытовых задачах
Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, неравенства в текстовых задачах,
Задача в следующих классах: 8 класс 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Цена производителя на некоторое изделие составляет 25 рублей. Прежде чем попасть на прилавок магазина, изделие проходит через несколько фирм-посредников, каждая из которых увеличивает цену в 1,5 или 2 раза, осуществляя услуги по хранению и транспортировке изделий. Магазин делает наценку 20%, после чего изделие поступает в продажу по цене 405 рублей. Сколько посредников было между магазином и производителем?
Ответ
5
Решение № 35852:
Магазин приобрёл товар у последнего посредника по цене \(\frac{405}{1,2}=337,5\) (рублей). Таким образом, за счёт посредников между производителем и магазином цена возросла в \(\frac{337,5}{25}=13,5\) раз. Пусть \(k\) посредников увеличивали цену в 1,5 раза, \(n\) посредников — в 2 раза. Тогда \(1,5^{k}\cdot 2n=13,5\), \(\left (\frac{3}{2}\right )^{k}\cdot 2^{n}=\frac{27}{2}\), откуда \(3^{k}\cdot 2^{n-k}=З^{3}\cdot 2^{-1}\). Учитывая, что числа 3 и 2 взаимно простые, получаем, что \(k=3\), \(n-k=-1), то есть \(k=3\), \(n=2\). Отсюда общее число посредников между магазином и производителем равно \(n+k=5\). Ответ: 5