№35861
Экзамены с этой задачей: системы неравенств в бытовых задачах
Предмет и тема: Математика, Арифметика и начала Алгебры, Текстовые задачи, неравенства в текстовых задачах,
Задача в следующих классах: 8 класс 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Владелец магазина купил оптом некоторое количество мониторов и продал их в течение марта в розницу, получив прибыль 40000 рублей. На все вырученные деньги он снова купил мониторы по той же оптовой цене и продал по той же розничной цене, что была в марте, получив на 48000 рублей больше, чем потратил. Сколько денег он потратил на первую покупку?
Ответ
200000
Решение № 35848:
Введём обозначения. Пусть первоначально владелец магазина купил \(n\) мониторов по цене \(x\) рублей, а продал их в марте по цене \(y\) рублей. По условию прибыль составила \(n(y-x)=40000\) рублей. На вырученные деньги предприниматель купил \(\frac{ny}{x}\) мониторов и получил \(\frac{ny}{x}(y-x)\) рублей прибыли, что по условию составило 48000 рублей. Решим полученную систему уравнений: \(\left\{\begin{matrix} n(y-x)=40000, \\\frac{ny}{x}(y-x)=48000 \end{matrix}\right.\) Разделив второе уравнение на первое, получим: \(\frac{y}{x}=1,2\). Подставив выражение \(y=1,2x\) в первое уравнение системы, придём к равенству \(n(1,2x-x)=40000\); \(0,2nx=40000\); \(nx=200000\). На первую покупку предприниматель потратил 200000 рублей. Ответ: 200000 рублей.