№3342
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Техника дифференцирования, Производная показательной и логарифмической функции,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Выписать производные функции, считая \(a, b, c, d\) - параметрами (числами), а \(x, y, z, t\) - переменными (аргументами функций).\(g(x)=x\sqrt[3]{x^{2}}+\frac{1}{\sqrt{x^{3}}}-\frac{7x}{\sqrt[3]{x^{2}}}\)
Ответ
\(\frac{5}{3}x^{2/3}-\frac{3}{2}\frac{1}{\sqrt{x^{2}}}-\frac{7}{3\sqrt[3]{x^{2}}}\)
Решение № 3342:
NaN