№33302
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические неравенства и системы неравенств, целые неравенства, сложные целые неравенства,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Наибольшее из чисел \(m\) и \(n\) обозначается \(max(m; n)\). Если числа \(m\) и \(n\) равны, то \(max(m; n)=m=n\). Найдите все значения \(x\), при каждом из которых \(max(6x+1; x^{2}+3)<7\).
Ответ
\(\left (-2; 1\right )\)
Решение № 33291:
\(\left (-2; 1\right )\)