№32677
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, сложные тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решите неравенство.\(6tg^{2} x-\frac{1}{cos x}+1\geq 0\)
Ответ
\( \left (-\frac{\pi}{2}+2\pi n; -\frac{\pi}{2}+2\pi n\right )\cup\left (\frac{\pi}{2}+2\pi n; \frac{3\pi}{2}+2\pi n\right ), n \in \mathbb{Z}\)
Решение № 32666:
\( \left (-\frac{\pi}{2}+2\pi n; -\frac{\pi}{2}+2\pi n\right )\cup\left (\frac{\pi}{2}+2\pi n; \frac{3\pi}{2}+2\pi n\right ), n \in \mathbb{Z}\)