№32652
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, сложные тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решите неравенство. \(2sin^{3} x-2sin x+cos^{2}\geq 0\)
Ответ
\( \left {\frac{\pi}{2}+2\pi n\right }\cup\left (\frac{5\pi}{6}+2\pi n; \frac{13\pi}{6}+2\pi n\right ], n \in \mathbb{Z}\)
Решение № 32641:
\( \left {\frac{\pi}{2}+2\pi n\right }\cup\left (\frac{5\pi}{6}+2\pi n; \frac{13\pi}{6}+2\pi n\right ], n \in \mathbb{Z}\)