№32647
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, сложные тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решите неравенство. \(2ctg 12x\cdot sin 12x\geq \sqrt{3}\)
Ответ
\( \left [-\frac{\pi}{72}+\frac{\pi n}{6}; \frac{\pi n}{6}\right )\cup\left (\frac{\pi n}{6}; \frac{\pi}{72}+\frac{\pi n}{6}\right ], n \in \mathbb{Z}\)
Решение № 32636:
\( \left [-\frac{\pi}{72}+\frac{\pi n}{6}; \frac{\pi n}{6}\right )\cup\left (\frac{\pi n}{6}; \frac{\pi}{72}+\frac{\pi n}{6}\right ], n \in \mathbb{Z}\)