№32643
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, сложные тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решите неравенство. \(\sqrt{2}tg 6x\cdot cos 6x\geq 1\)
Ответ
\( \left [\frac{\pi}{24}+\frac{\pi n}{3}; \frac{\pi}{12}+\frac{\pi n}{3}\right )\cup\left (\frac{\pi}{12}+\frac{\pi n}{3}; \frac{\pi}{8}+\frac{\pi n}{3}\right ], n \in \mathbb{Z}\)
Решение № 32632:
\( \left [\frac{\pi}{24}+\frac{\pi n}{3}; \frac{\pi}{12}+\frac{\pi n}{3}\right )\cup\left (\frac{\pi}{12}+\frac{\pi n}{3}; \frac{\pi}{8}+\frac{\pi n}{3}\right ], n \in \mathbb{Z}\)