№32641
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, сложные тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решите неравенство. \(2tg 3x\cdot cos 3x\leq \sqrt{3}\)
Ответ
\( \left [\frac{2\pi}{9}+\frac{2\pi n}{3}; \frac{\pi}{2}+\frac{2\pi n}{3}\right )\cup\left (\frac{\pi}{2}+\frac{2\pi n}{3}; \frac{7\pi}{9}+\frac{2\pi n}{3}\right ], n \in \mathbb{Z}\)
Решение № 32630:
\( \left [\frac{2\pi}{9}+\frac{2\pi n}{3}; \frac{\pi}{2}+\frac{2\pi n}{3}\right )\cup\left (\frac{\pi}{2}+\frac{2\pi n}{3}; \frac{7\pi}{9}+\frac{2\pi n}{3}\right ], n \in \mathbb{Z}\)