№32609
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Тригонометрия, тригонометрические уравнения и неравенства, Решение тригонометрических неравенств, сложные тригонометрические неравенства,
Задача в следующих классах: 10 класс 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Решите неравенство. \(4cos 3x cos 7x+\sqrt{3}\leq 2cos 4x\)
Ответ
\( \left [\frac{\pi }{12}+\frac{\pi n}{5}; \frac{7\pi}{60}+\frac{\pi n}{5} \right ], n \in \mathbb{Z}\)
Решение № 32598:
\( \left [\frac{\pi }{12}+\frac{\pi n}{5}; \frac{7\pi}{60}+\frac{\pi n}{5} \right ], n \in \mathbb{Z}\)