Задача №3098

№3098

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,

Задача в следующих классах: 11 класс

Сложность задачи : 1

Задача встречается в следующей книге:

Условие

Найти наибольшее и наименьшее значение функции\(y=\sqrt[3]{x^{2}}(x-1)\) на отрезке \(\left [ \frac{1}{1000};1 \right ]\)

Ответ

\underset{\left [ \frac{1}{1000};1 \right ]}{max} y(x)=0; \underset{[ \frac{1}{1000};1 \right ]}{min} y(x)=-\frac{3}{5}\sqrt[3]{\frac{4}{25}}

Решение № 3098:

NaN

Поделиться в социальных сетях

Комментарии (0)