№3093
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Наибольшее и наименьшее значения функции,
Задача в следующих классах: 11 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Найти наибольшее и наименьшее значение функции\(y=\frac{4}{3}x^{3}-4x\) на отрезке \([0;2]\)
Ответ
\underset{[-2;2]}{max} y(x)=\frac{8}{3}; \underset{[-2;2]}{min} y(x)=-\frac{8}{3}
Решение № 3093:
NaN