№2886
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, Умножение и деление корней,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Произвести указанные действия над корнями \(\left ( \sqrt[4]{8a^{6}b^{9}} -ab\sqrt[6]{8a^{4}b^{5}}+ab^{2}\sqrt[4]{2a^{2}b}\right ):\sqrt[4]{2b}\)
Ответ
\(ab^{2\sqrt[4]{4a^{2}}}-ab\sqrt[12]{8a^{8}b^{7}}+ab^{2}\sqrt{a}\)
Решение № 2886:
\(\left ( \sqrt[4]{8a^{6}b^{9}} -ab\sqrt[6]{8a^{4}b^{5}}+ab^{2}\sqrt[4]{2a^{2}b}\right ):\sqrt[4]{2b}=\frac{ \sqrt[4]{8a^{6}b^{9}} -ab\sqrt[6]{8a^{4}b^{5}}+ab^{2}\sqrt[4]{2a^{2}b}}{\sqrt[4]{2b}}=\frac{ab^{2}2b\sqrt[4]{4a^{2}}-ab\sqrt[12]{\left ( 8a^{4}b^{5} \right )^{2}\left ( 2b \right )^{9}}+ab^{2}\sqrt[4]{16a^{2}b^{4}}}{\sqrt[4]{16b^{4}}}=ab^{2\sqrt[4]{4a^{2}}}-ab\sqrt[12]{8a^{8}b^{7}}+ab^{2}\sqrt{a}\)