№2840
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, Умножение и деление корней,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Произвести указанные действия над корнями \(\left ( \sqrt{a}+\sqrt{\frac{b}{a}} \right )\cdot \left ( \sqrt{ab}-\sqrt{\frac{a}{b}} \right )\)
Ответ
\(\frac{\left (a+\sqrt{b}\right )\left ( b-1 \right )}{\sqrt{b}}\)
Решение № 2840:
\(\left ( \sqrt{a}+\sqrt{\frac{b}{a}} \right )\cdot \left ( \sqrt{ab}-\sqrt{\frac{a}{b}} \right )=\frac{a+\sqrt{b}}{\sqrt{a}}\cdot \left ( \sqrt{ab}-\sqrt{\frac{a}{b}}\right )=\frac{\left ( a+\sqrt{b} \right )\left ( \sqrt{ab}-\sqrt{\frac{a}{b}} \right )}{\sqrt{a}}=\frac{\left (a+\sqrt{b} \right )\sqrt{a}\left ( b-1 \right )}{\sqrt{ab}}=\frac{\left (a+\sqrt{b}\right )\left ( b-1 \right )}{\sqrt{b}}\)