Задача №2705

№2705

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, Вывод множителя из-под радикала и введение множителя под радикал,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге:

Условие

Вывести множитель из-под радикала \(yz^{2}\sqrt[2r]{x^{4r+1}y^{6r+2}z^{5}}\)

Ответ

x^{2}y^{4}z^{2}\sqrt[2r]{xy^{2}z^{5}}

Решение № 2705:

\(yz^{2}\sqrt[2r]{x^{4r+1}y^{6r+2}z^{5}}=yz^{2}x^{2}y^{3}\sqrt[2r]{xy^{2}x^{5}}=x^{2}y^{4}z^{2}\sqrt[2r]{xy^{2}z^{5}}\)

Поделиться в социальных сетях

Комментарии (0)