№2438
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Теорема Виета,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Убедитесь, что число 1 или число -1 является одним из корней данного квадратного уравнения, и найдите его второй корень: \( (2-a) x^{2}-x-3+a=0 \).
Ответ
NaN
Решение № 2438:
\( a=2-a, b=-1 c=-3+a a+b+c=2-a-1-3+a=0 a-b+c=2-a+1-3+a=0\Rightarrow x_{1}=-1 x_{1}*x_{2}=\frac{-3+a}{2-a} -1+x_{2}=\frac{-3+a}{2-a} -x_{2}=\frac{-3+a}{2-a} x_{2}=\frac{-(3+a)}{2-a}=\frac{3-a}{2-a} \).