№2363
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Теорема Виета,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Используя теорему, обратную теореме Виета, найдите корни квадратного уравнения \( x^{2}+5x-14=0 \).
Ответ
NaN
Решение № 2363:
\( \left\{\begin{matrix}x_{1}+x_{2}=-5 \\ x_{1}*x_{2}=-14 \end{matrix}\right. \left\{\begin{matrix}x_{1}=-5-x_{2} \\ (-5-x_{2})x_{2}=-14 \end{matrix}\right. -5x_{2}-x_{2}^{2}+14=0 | *(-1) x_{2}^{2}+5x_{2}-14=0 D=5^{2}-4*1*(-14)=25+56=81=9^{2} x_{2}=\frac{-5-9}{2}=-7; x_{2}=\frac{-5+9}{2}=2 \).