№2314
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Решите уравнение: \( \frac{x^{3}}{\left | x \right |}-7x+12=0 \).
Ответ
NaN
Решение № 2314:
При \( x> 0 x^{2}-7x+12=0 D=49-4*12=49-48=1 x_{1}=\frac{7-1}{2}=\frac{6}{2}=3; x_{2}=\frac{7+1}{2}=\frac{8}{2}=4\) При \( x< 0 -x^{2}-7x+12=0 D=49+4*12=49+48=97=\sqrt{97} x_{1}=\frac{7-\sqrt{97}}{-2}=\frac{-7-\sqrt{97}}{2}; x_{2}=\frac{1+\sqrt{97}}{-2}=\frac{-7+\sqrt{97}}{2} \) - не подходит.