№2291
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Решите уравнение: \( 4x^{2}+2\sqrt{3}+1=0 \).
Ответ
NaN
Решение № 2291:
\( D=\frac{-4\sqrt{3}-4\sqrt{2}}{2*4}=\frac{4*(-\sqrt{3}-\sqrt{2})}{2*4}=\frac{-\sqrt{3}-\sqrt{2}}{2} x_{1}=\frac{-4\sqrt{3}-4\sqrt{2}}{2*4}=\frac{4*(-\sqrt{3}-\sqrt{2})}{2*4}=\frac{-\sqrt{3}-\sqrt{2}}{2} x_{2}=\frac{-4\sqrt{3}+4\sqrt{2}}{2*4}=\frac{4*(-\sqrt{3}+\sqrt{2})}{2*4}=\frac{-\sqrt{3}+\sqrt{2}}{2} \).