№2274
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Представьте число 120 в виде произведения двух чисел, одно из которых на 2 меньше другого.
Ответ
10 и 12 или -12 и -10.
Решение № 2274:
Пусть одно число \( n \), а второе число\( n+1 \). Составим уравнение: \( x(x+2) =120 x^{2}+2x-120=0 D=4+4*120=4+480=484=22^{2} x_{1}=\frac{-2-22}{2}=-\frac{24}{2}=-12; x_{2}=\frac{-2+22}{2}=\frac{20}{2}=10\) - первое число. Если \( x=-12 \), то второе число равно \(-14+2=-10\) Если \( x=10 \), то второе число равно \( 10+2=12 \).