№22311
Экзамены с этой задачей: Рациональные уравнения и неравенства
Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Известно, что сила взаимодействия тела, находящегося на некоторой высоте, с Землей описывается уравнением закона всемирного тяготения: \(F_{t}=G\cdot \frac{M\cdot m}{(R+h)^{2}}\), где \(F_{t}\) - сила тяжести, \(m\) - масса тела, равная \(2\) кг, \(M\) - масса Земли, \(R\) - радиус Земли, \(h\) - расстояние, на которое удалено тело от Земли. А ускорение свободного падения тела рассчитывается по формуле: \( g=G\cdot \frac{M}{R^{2}}\) и равно \(10\) м/с2. Определите силу взаимодействия тела и Земли, если тело удалено от ее поверхности на 4 земных радиуса.
Ответ
0.8
Решение № 22302:
Для того, чтобы определить силу взаимодействия тела, необходимо решить уравнение: \(F_{t}=G\cdot \frac{M\cdot m}{(R+h)^{2}}\). По условию известно, что \(h=4\cdot R\), а \( g=G\cdot \frac{M}{R^{2}}\). Заменяем данные значения в исходном уравнении и решаем его: \(F_{t}=G\cdot \frac{M\cdot m}{(R+h)^{2}}=F_{t}=G\cdot \frac{M\cdot m}{(R+4\cdot R)^{2}}=G\cdot \frac{M\cdot m}{25\cdot R^{2}}=\frac{m\cdot g}{25}=\frac{2\cdot 10}{25}=0.8\) Н.