№22293
Экзамены с этой задачей: Иррациональные уравнения и неравенства
Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Известно уравнение движения тела: \(y=\frac{g\cdot t^{2}}{2}\) , \(y\) - путь перемещения тела на оси \(y\), \(g\) - ускорение свободного падения, равное \(9,8\) м/с2, \(t\) - время падения тела. А средняя скорость равна отношению пройденного пути \(H\) к затраченному времени: \(v_{sr}=\frac{H}{t}\). Определите значение средней скорости движения тела, если оно падает с высоты \(4,9\) м.
Ответ
17.6
Решение № 22284:
Решение задачи сводится к нахождению неизвестного значения средней скорости в уравнении: \(v_{sr}=\frac{H}{t}\). Значение высоты \(H\) дано в условии задачи, а значение времени выразим из формулы: \(y=\frac{g\cdot t^{2}}{2}\). Так как время падения тела до земли равно \(t\), то в этот момент времени координата тела \(y\) равна высоте \(H\), а значит справедливо выражение: \(y=\frac{g\cdot t^{2}}{2}=>H=\frac{g\cdot t^{2}}{2} => t=\sqrt{\frac{2\cdot H}{g}}\). подставляем значение \(t\) в исходное уравнение и решаем его: \(v_{sr}=\frac{H}{t}=H\cdot \sqrt{\frac{g}{2\cdot H}}=\sqrt{\frac{g\cdot H}{2}}= \sqrt{\frac{9,8\cdot 4,9}{2}}=4,9\) м/с \(= 17,6\)км/ч.