№22289
Экзамены с этой задачей: Иррациональные уравнения и неравенства
Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Известно, что уравнение движения выглядит следующим образом: \(y=\frac{g\cdot t^{2}}{2}\), а уравнение скорости:\(v=g\cdot t\), где \(t\) - время, \(g\) - скорость свободного падения, равная \(10\)м/с2, а \(y\) - это путь, пройденный телом. Определите скорость молота в момент удара о сваю, если высота его свободного падения \(2, 5\) м.
Ответ
25.5
Решение № 22280:
По рисунку к задаче видно, что путь, пройденный телом, есть высота свободного падения, значит справедливо равенство:\(y=h => h=\frac{g\cdot t^{2}}{2}\). Выразим из данного выражения значение времени \(t\): \(t=\sqrt{\frac{2\cdot h}{g}}\). Чтобы найти искомое значение скорости \(v\), подставляем \(t\) в уравнение и решаем его: \(v=g\cdot t=g\cdot \sqrt{\frac{2\cdot h}{g}}=\sqrt{\frac{2\cdot g^{2}\cdot h}{g}}=\sqrt{2\cdot g\cdot h}=\sqrt{2\cdot 10\cdot 2,5}= 7,07\) м/с \(=25,5\)км/ч.