№22288
Экзамены с этой задачей: Иррациональные уравнения и неравенства
Предмет и тема:
Задача в следующих классах:
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Высота Исаакиевского собора в Ленинграде \(101,8\) м. Определите время свободного падения с этой высоты, если уравнение движения выглядит следующим образом: \( y=\frac{g\cdot t^{2}}{2}\) , где \(y\)- расстояние, \(t\) - время падения, а \(g\)-ускорение свободного падения, равное \(10\) м/с2.
Ответ
4.5
Решение № 22279:
Чтобы решить задачу, сделаем рисунок. На нем введем ось \(y\), покажем высоту, с которой падало тело, и то, что начальная скорость тела v_{0}=0; Из рисунка видно, что \(y=h\). Следовательно, данное в условии уравнение можно переписать следующим образом: \(h=\frac{g\cdot t^{2}}{2}\). Откуда выражаем искомое значениt \(t\) и получаем решение задачи: \(h=\frac{g\cdot t^{2}}{2}=> t=\sqrt{\frac{2\cdot h}{g}}=\sqrt{\frac{2\cdot 101,8}{10}}=4,5\) c.