№217
Экзамены с этой задачей: Преобразования числовых рациональных выражений Действия с обыкновенными дробями Действия с десятичными дробями
Предмет и тема: Математика, Арифметика и начала Алгебры, Арифметика, Дробные числа, комплексные вычисления с дробями,
Задача в следующих классах: 5 класс 6 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найдите значение выражени: \(\frac{3\frac{1}{3}\cdot 1,9+19,5:4\frac{1}{2}}{\frac{62}{75}-\frac{4}{25}}\)
Ответ
16
Решение № 217:
Для решения выражения \(\frac{3\frac{1}{3} \cdot 1,9 + 19,5 : 4\frac{1}{2}}{\frac{62}{75} - \frac{4}{25}}\) выполним следующие шаги: <ol> <li>Преобразуем смешанные числа и десятичные дроби в обыкновенные дроби: \[ 3\frac{1}{3} = \frac{10}{3}, \quad 1,9 = \frac{19}{10}, \quad 19,5 = \frac{39}{2}, \quad 4\frac{1}{2} = \frac{9}{2} \] </li> <li>Подставим преобразованные значения в выражение: \[ \frac{\frac{10}{3} \cdot \frac{19}{10} + \frac{39}{2} : \frac{9}{2}}{\frac{62}{75} - \frac{4}{25}} \] </li> <li>Выполним умножение и деление в числителе: \[ \frac{10}{3} \cdot \frac{19}{10} = \frac{10 \cdot 19}{3 \cdot 10} = \frac{19}{3} \] \[ \frac{39}{2} : \frac{9}{2} = \frac{39}{2} \cdot \frac{2}{9} = \frac{39 \cdot 2}{2 \cdot 9} = \frac{39}{9} = \frac{13}{3} \] </li> <li>Сложим результаты в числителе: \[ \frac{19}{3} + \frac{13}{3} = \frac{19 + 13}{3} = \frac{32}{3} \] </li> <li>Выполним вычитание в знаменателе: \[ \frac{62}{75} - \frac{4}{25} = \frac{62}{75} - \frac{4 \cdot 3}{25 \cdot 3} = \frac{62}{75} - \frac{12}{75} = \frac{62 - 12}{75} = \frac{50}{75} = \frac{2}{3} \] </li> <li>Подставим результаты в исходное выражение: \[ \frac{\frac{32}{3}}{\frac{2}{3}} = \frac{32}{3} \cdot \frac{3}{2} = \frac{32 \cdot 3}{3 \cdot 2} = \frac{32}{2} = 16 \] </li> </ol> Таким образом, значение выражения \(\frac{3\frac{1}{3} \cdot 1,9 + 19,5 : 4\frac{1}{2}}{\frac{62}{75} - \frac{4}{25}}\) равно \(16\). Ответ: 16